

1

Priority Based Round Robin (PBRR) CPU

Scheduling Algorithm

Sonia Zouaoui1,3, Lotfi Boussaid1,2, Abdellatif Mtibaa1,2

sonia.zouaoui87@gmail.com, lotfi.boussaid@enim.rnu.tn, abdellatif.mtibaa@enim.rnu.tn
1Laboratory of Electronics and Micro-electronics, University of Monastir,

2National Engineering School of Monastir, University of Monastir, Tunisia
3National Engineering School of Sousse,

Riadh city, 4000,

Sousse, Tunisia

Abstract: This paper introduce a new approach for scheduling algorithms which aim to improve real time operating system CPU

performance. This new approach of CPU Scheduling algorithm is based on the combination of round-robin (RR) andPriority

based (PB) scheduling algorithms. This solution maintains the advantage of simple round robin scheduling algorithm,which is

reducing starvation and integrates the advantage of priority scheduling. The proposed algorithm implements the concept of time

quantum and assigning as well priority index to the processes. Existing round robin CPU scheduling algorithm cannot be

dedicated to real time operating system due to their large waiting time, large response time, large turnaround time and less

throughput. This new algorithm improves all the drawbacks of round robin CPU scheduling algorithm. In addition, this paper

presents analysis comparing proposed algorithm with existing round robin scheduling algorithm focusing on average waiting

time and average turnaround time.

Key words: Scheduling algorithms, Round robin (RR), Priority based, average waiting time, average turnaround time.

I. Introduction

Scheduling is the most important service of an operating system; it gives processes access to system resources. Many

requirements like fast computing, multitasking (execute more than one process at a time) and multiplexing (transmit multiple

flows simultaneously) arise the need of scheduling algorithms [1]. Scheduling is in the heart of an operating system. It presents a

fundamental function, which selects the process to run when there are multiple runnable processes. There are varieties of

scheduling algorithms such as First Come First Served (FCFS), Shortest Job First (SJF), Round Robin (RR), Priority Based

Scheduling, etc. [2, 3].

Due to their poor performance, the majority of these algorithms are rarely used in real time operating systems except for the

Round Robin scheduling. In CPU scheduling, a number of assumption are taken into consideration, which are as follows [4, 5]:

1. Job pool consists of runnable processes waiting for the CPU.

2. All processes are independent and compete for resources.

3. The function of the scheduler is to fairly allocate the limited resources of CPU to the different processes and in a way that

optimizes some performance criteria.

The scheduler, which constitutes the heart of the kernel, plays a fundamental role in selecting the appropriate process to be run.

In this context, an operating system can be characterized according to three different types of schedulers: a long term, a mid-term

or medium term and a short-term scheduler (figure 1).

2

Figure 1. Various types of schedulers

For long-term scheduler, it loads processes in memory for execution after selecting them from the job pool. Concerning the

short-term scheduler, it allocates the CPU to one process from those ready to be executed. For medium-term scheduler, it takes

off processes from main memory and place them on secondary memory (such as a disk drive) or vice versa. This is commonly

referred to as “Swapping” of processes in memory [2].

The efficiency of the Round Robin Scheduling Algorithm depends on the time quantum size. Firstly, if the quantum of time is

extremely large, it decreases the response time and it behaves similar to FCFS algorithm. In the other hand, if the quantum of

time is extremely small this causes many context switches, which decreases the CPU efficiency.

II. Related works

Scheduling algorithms play a key role in tasks management mainly in real time conditions. That is why there have been earlier

works about them. In fact, efforts have been made to conceive new scheduling algorithms in order to give better turnaround time,

average-waiting time and minimize the number of context switches.

Al-Husainy[6] proposed a new algorithm Best Job First(BJF), which contains a mix of some existing standard algorithms. This

algorithm combines priority, arrival time and CPU burst time, which presents the most important scheduling parameters. For his

approach, a new factor (f) is calculated to generate a ready queue in that order. The job to be executed first is the one with the

highest priority, shortest burst time and the one that is submitted to the system early. This approach shows that BJF is better than

FCFS, Priority, RR and SJF algorithms.

YaashuwanthC. and R. Ramesh [7] said that a dedicated small processor can be used to reduce the overhead of the main

processor by rearranging processes in the ascending order based on the processes CPU burst time (lower to higher). They

proposed an architecture in which they improve all the drawbacks of round robin CPU scheduling algorithm. This approach

introduces a concept called intelligent time slicing. The time slice is calculated to be different and independent for each task.

Mohanty etal[8] proposed a new algorithm, known as Priority Based Dynamic Round Robin Algorithm (PBDRR). This

approach consists of computing an intelligent time slice for individual processes after every round of execution. In the proposed

scheduling algorithm, larger time slice is given to shorter processes to be able to finish their execution earlier. The new

algorithm consists of the combination of SJF and RR algorithm with dynamic time quantum.

HimanshiS. [9] added priority of processes to RR scheduling algorithm. The order of execution of processes is determined by

computing the factor of precedence ‘FP’ for each process. This approach introduce the intelligent service time “ST” for each

process which determines process execution time in a single round and execute the processes in RR scheduling algorithm.

P.S.Varma et al. [10] proved that RR performance can be improved by taking mean average of burst times as time quantum. The

proposed algorithm uses the balanced factor(BF) of precedence rather than arrival time to find the order of execution of

processes.

3

H. S. Behera [11] introduced the Precedence based Round Robin with Dynamic Time Quantum (PRRDTQ), which is a new

approach of Round Robin scheduling algorithm. Their algorithm gives precedence to all processes according to their priority and

burst time, and then Round Robin algorithm will be applied. So processes with shorter burst time and higher priority are

executed first which result on better turnaround time and better waiting time.

Z. H. Khalil et al. [12] proposed a new RR algorithm based on the concept of Dynamic quantum time. This is done by taking the

Highest Response Ratio Next (HRRN) for each process in each round to select the next process from ready queue. For this

algorithm, an intelligent time slice (ITS) is calculated. This can give a different time quantum to each process based on the

difference between CPU burst time, context switch avoidance time and priority.

R. K. Naik et al. [13] have focused on the time slice which is integrated on a new hybridized multilevel feedback queue

(MLFQ). The proposed approach in which the processes that are entering into the system are assigned to the first ready queue

according to their priority. The priority, which is decided by using HRRN algorithm, is then gradually shifted to the next lower

level queues upon expiration of their time slice.

III. Real Time Operating System (RTOS)

Real Time Operating System (RTOS) is a reactive OS that must respond continuously to stimuli from a process that seeks to

control. A real-time system is a reactive system that must meet time constraints[14].

A real-time system must be able to process information from the process within a period that does not affect the process control.

React too late can lead to catastrophic consequences for the system itself or the process. Compliance with time constraints is the

main constraint to satisfy. The validity of a real time system depends not only on the results of the treatment carried out but also

the temporal aspect (a fair calculation but out of time is an invalid calculation).

A. Real-time systems classification

The critical time constraints led to classify the real-time systems in the following three categories [15]:

- Real time strict system: a system that is subject to strict time constraints, that is to say for which the slightest mistake time

can have devastating human and economic consequences. Most applications in the avionics field, automobile, etc., are strict

real time;

- Real-time flexible system: a system that is subject to flexible time constraints, a number of timing errors can be tolerated.

- Real-time mixed system: a system that is subject to strict and flexible time constraints.

B. Real-time task

A real-time task consists of a set of instructions that can be run in sequence on one or more processors and meet time constraints.

In the following, we will assume that a task will not run in parallel. It can be repeated any number of times, possibly infinite.

Each of these performances is called instance or work ("job"). A real-time system consists of a set of real-time tasks subject to

real-time constraints (Real time constraints).

A real-time task can be:

- Periodic: its instances (versions) are repeated indefinitely and there is a constant time between two successive activations of

instances referred period.

- Sporadic: its instances (versions) are repeated indefinitely and there is a minimum time between two successive instances.

- Aperiodic: there is no correlation between successive instances.

C. Periodic tasks

The classic model of periodic tasks called Liu and Layland models, the most used in modeling real-time systems[16]. This model

allows defining multiple settings for a job. These parameters are of two types: static parameters for the task itself and the

dynamic parameters on each instance of the task (figure 2). The basic static parameters of a periodic task τiis:

τi= (Ri, Ci, Di, Ti) (1)

- Ri (release time): date of first activation of task i, when τican start its first performance.

- Ci (computing time): execution time of τi. This parameter is considered in several works on real-time scheduling as the worst

case execution time (WCET for worst-case execution time) on the processor on which it will run.

- Di: relative maturity or critical time frame for each activation of τi..

- Ti: implementation period τi..

4

Figure2. Classic model in periodic tasks

Other static parameters are derived from the basic ones:

- Ui=
𝐶𝑖

𝑇𝑖
, CPU utilization factor for τi,Ui≤1.

- CHi=
𝐶𝑖

𝐷𝑖
,the density of the task τi, CHi≤1.

• Concrete/ no concrete tasks

If all the first activation dates of all jobs are known, it is said that the tasks are concrete. On the contrary, if we do not know the

dates of first activation, it is said that these tasks are not concrete.

• Synchronous/ asynchronous tasks

If all tasks are practical and have the same date of first activation, it is said that the tasks are synchronized activations.

Otherwise, they are asynchronous

• Real-time constraints

In real-time scheduling, tasks can be subject to several constraints such as the constraints of deadlines, strict periodicity,

dependencies and precedence, etc.

• Deadlines

The constraints of deadlines allow expressing a condition of the end date of implementation at latest of a given task. Consider a

system of periodic tasks, according to the relationship between the period T i and the deadline for each task i Di, we distinguish

three types of deadlines:

- Di = Ti: each activation of the task τi must be executed before the next activation. We talk about deadlines on tasks

activations, implicit deadlines or deadlines on requests.

- Di≤Ti: each activation of the task τi must be executed on or before a date less than or equal to the date of its next activation.

We talk about stress at work deadlines.

- Di≠Ti: there is no correlation between at latest end date of execution of τi upon activation and its next activation of τi. One

can have (Di≤Ti) or (Di>Ti), we speak here about arbitrary tasks deadlines.

• Strict periodicity

Consider a periodic task τi in a real time task system, strict periodicity constraint requires that the time elapsed between two

consecutive beginnings of execution dates 𝑠𝑖
𝑘 and 𝑠𝑖

𝑘+1 corresponds exactly to the period of the task τi. The advantage of this

constraint is that knowledge of the actual start date of the first instance 𝑠𝑖
1 implies knowledge of the effectivestart date of all

subsequent instances of the same task [17], this is expressed by the relationship:

𝑠𝑖
𝑘+1 =𝑠𝑖

1+kTi (k≥ 1) (2)

• Dependencies between tasks

A dependency between two tasks i and j can be of two types: A precedence dependency and / or data dependency. A precedence

dependency between (i,j) requires that the task j started running after the task i have completely finished running [17,18, 19, 20].

The precedence of constraints are indirectly real-time constraints and we said that the task i is a predecessor of the task j and j is

a successor of i. If task i runs exactly once before a run of task j, we have then a simple precedence constraint if not it’s a wide

precedence[20, 2, 21].

A data dependency means the task i produces a result that is consumed by j [17, 18], this dependence inevitably leads to

precedence between tasks. Tasks are called independent if they are defined only by their temporal parameters.

• Latency

Latency is defined for dependent tasks by transitivity in the case of a path tasks. Let’s suppose τi and τj two tasks, the latency

between i and j denoted L(τi,τj) is the time between the start of execution of τi and the end of execution of τj.

 Ci
ri,1 di,1 di,2 ri,3 di,3 ri,4

Ti

0

τi

5

IV. Scheduling

1. Scheduling Objectives

When designing a scheduling algorithm, a system designer must take into consideration many factors such as the kind of systems

used and user's needs.

Maximize throughput: Maximizing the throughput of a scheduler is made by servicing the maximum number of processes per

unit of time.

Avoid an infinite blocking state or starvation:

Avoiding an infinite blocking state or starvation is avoiding process to stuck in waiting state for unbounded time before or while

process service.

Minimize overhead: Using system resources in an effective manner to reduce system overhead (system overhead cause

resources wastage). So overall system performance improves greatly.

Enforcement of priorities: If a system is based on processes priorities, the scheduler shall privilege higher priority processes.

Achieve balance between response and utilization:

System resources shall be kept busy by the scheduler.

The scheduler can prevent starvation through the concept of aging and be able to increase throughput by promoting processes

having a short burst time and can be satisfied quickly. Also, processes whose completion cause other processes to run shall be

favored by the scheduler to accomplish goals previously sited.

2. Scheduling Parameters

Each CPU scheduling algorithm has its own proprieties, and choosing a particular algorithm may favor one class of process over

the other. Many criteria must be considered for comparing CPU scheduling algorithms performance. Those criteria include the

following:

- CPU utilization: the maximum rate of keeping the CPU busy doing useful work.

- Throughput: The number of jobs processed per time unit.

- Turnaround time: The time needed for the execution of one process.

- Waiting time: The time spent by the process waiting in ready queue.

- Response time: The time between submission of the request and the first response.

- The sharing of the processor and resources introduced several states for a task (Figure 3):

• New: the task is not yet activated.

• Ready: the task is enabled and has all the resources it needs to run.

• Waiting: the task is waiting for resources.

• Running: the task runs.

• Terminated: the task has no current application, it has terminated.

The scheduler is responsible for the transition from one task state to another. For each invocation, the scheduler updates the list

of ready tasks by including all active tasks and who have their resources and removing tasks that ended their performances or

blocked by waiting a resource. Then among the ready tasks, the scheduler selects the highest priority task to run. Thus, a task in

the New state can move to the ready state. A task in the ready state may go to running state or waiting state. A task in running

status may return to the ready state if it is preempted by another higher-priority task, it can go to the waiting state if it is waiting

for resource liberation or has finished executing, it passes in the passive state.

Figure3. Process state transition diagram

A task can move from the waiting state to the ready state, and finally a task can move from the passive state to the ready state.

Figure 3 provides an illustration of the different states and their transitions [2].

new

ready runnig

terminated

waiting

Interrupt Exit admitted

Scheduler Dispatch

I/O or event wait I/O or event completion

6

V. Existing CPU scheduling algorithms

There are varieties of CPU Scheduling algorithms. The most and commonly used are explained below.

• First-come first-served (FIFO) scheduling policy

It is a policy of seniority without requisition: The CPU is allocated according to the process submission order. In this policy,

processes of low execution time can be penalized because a long process precedes them in the queue.

• Scheduling policy "shorter first" scheduling policy

This policy tries to remedy the disadvantage mentioned for the previous policy. The CPU is allocated to the process of smaller

execution time. This policy is also a policy without requisition. It has the property of minimizing the average response time for

all scheduling algorithms without requisitioning. It penalizes long work. It also makes it necessary to estimate the duration of the

processes, which are not usually known.

There is a version with requisition of this policy called "time remaining first shortest": in this case, the executing process restores

the processor when a new execution time process less than its remaining execution time becomes ready [21].

• Round robin scheduling policy

Each process present in the queue of ready processes acquires the processor in turn for a maximum of a time equal to the

quantum of time. If the process has completed its execution before the end of the quantum, it releases the processor and the next

process in the queue of the ready processes is elected. If the process has not completed before the end of the quantum, it loses the

processor and is reinserted at the end of the process. This turnstile policy is usually used in timeshare systems. Its performance

largely depends on the size of the quantum. Too large quantum increases the response times while a too small quantum

multiplies the context switches until they are not negligible [22].

• Priority-based Scheduling:

A fixed priority rank is assigned to each process and the scheduler sort processes basing on their priorities.

Process with highest priority is putted on the head of the queue and the process with the lowest priority in the tail [23].

• Rate Monotonic (RM)

RM scheduling algorithm was introduced by Liu and Layland in 1973 [16]. This is a preemptive scheduling algorithm which

applies to independent periodic tasks, and due upon request (Ti = Di). The task priority is inversely proportional to its period, that

is to say, the longer the period of a task is, the higher is the priority. This algorithm is optimal in the class of algorithms for fixed

priority preemptive independent tasks due on synchronous request. A sufficient condition for schedulability of the RM algorithm

for a set of periodic tasks Γn maturing on request is given by [16]:

∑
𝐶𝑖

𝑇𝑖

𝑛
𝑖=1 ≤ n(2

1

𝑛– 1) (3)

• Deadline Monotonic (DM)

The DM scheduling algorithm was introduced by Leung and Whitehead in 1982 for conditioned deadline tasks[25]. The task

priority is inversely proportional to its relative deadline, that is to say, the longer the relative deadline is thehigher isthe priority.

This algorithm is optimal in the class of preemptive and fixed priority algorithms for independent preemptive and conditioned

deadline tasks (Di ≤ Ti). The sufficient condition for schedulability of the DM algorithm for a set of periodic tasks Γn due to

stress is given by [31]:

∀𝜏𝑖 ∈ 𝛤𝑛 , 𝐶𝑖 + ∑ ⌈
𝐷𝑖

𝑇𝑗
⌉𝑗∈ℎ𝑝(𝜏𝑖) . 𝐶𝑖 ≤ 𝐷𝑖 (4)

With hp(τi) is the set of Γn tasks of priorities higher than or equal to Γn, not including Γn.

Dynamic priorities

A dynamic priority changes during the execution of an instance [26].

• Earliest Deadline First (EDF)

The EDF scheduling algorithm was introduced by Lui and Layland in 1973 [16]. It is a scheduling algorithm which can be

preemptive or non-preemptive and applied for independent periodic tasks (Ti = Di). The highest priority at time t is allocated to

the task with the closest absolute deadline. EDF is optimal for independent and preemptive tasks. A necessary and sufficient

condition of schedulability of EDF for a set of periodic tasks Γn is given by:

∀τi∈Γn∑
C i

T i

n
i=1 ≤ 1 (5)

• Least-Laxity First (LLF)

7

The LLF scheduling algorithm is based on the laxity. The task whose laxity is the lowest compared to all the ready tasks have

the highest priority. This algorithm is optimal for independent and preemptive tasks.

The condition of schedulability of LLF and the EDF are the same. That is to say that the necessary and sufficient condition of

schedulability of LLF for a set of periodic tasks Γnis given by:

∀τi∈Γn∑
C i

T i

n
i=1 ≤ 1 (6)

A dynamic priority changes during the execution of an instance. The most used scheduling algorithm for dynamic priorities is

"Least laxity Fisrt".

VI. Drawbacks of Round Robin Scheduling Algorithm

Round Robin scheduling algorithm has many disadvantages, which are as following:

A. High Average Waiting Time

For round robin architecture, the process spends the time in the ready queue waiting his turn to own the processor. Due to the

presence of time quantum, processes are pushed to leave the processor and return to the waiting state. This procedure produces a

high average waiting time, which presents the main disadvantage.

B. Low Throughput

Throughput present the number of process completed per time unit. Due to its time slice, Round Robin is characterized by a high

number of context switches, which leads to overall degradation of the system performance (throughput).

C. Context Switch

Ones the time slice finished, the process is forced to leave the CPU. The scheduler stores the context of the current process in

stack or a register and allots the CPU to the next process in the ready queue. This concept is known by context switching which

leads to time wastage and scheduler overhead.

D. High Response Time

Response time is defined as the time between submission of a request and the first CPU response.

In general, round robin made larger response time, which causes system performance degradation. To achieve high performance,

the reduction of response time shall be indispensable.

E. Very High Turnaround Time

Turnaround time is the time between submission of a process and its completion. Round Robin scheduling algorithm is

characterized by a high turnaround time. So as a result, to improve the system performance this parameter should be reduced.

VII. Efficiency Of Existing Approaches

Scheduling processes in a fair manner and producing results in minimum average waiting time and turnaround time are the main

criteria of an efficient algorithm. In different research papers, the issue of time quantum and priority decision is the bottleneck in

various CPU scheduling algorithm. Finding the optimal time quantum in round robin algorithm is a difficult problem to solve.

The real meaning of dynamicity in CPU scheduling algorithms is not goal to attempt. A variety of objectives are to be taken into

consideration and solutions must satisfy most of the performance criteria. Solutions must be universally accepted by most of the

operating system. Concerning dynamic time quantum and dynamic priority calculation, many researchers are carried out and

some of them paid attention towards the combination of two. Other researchers pay big attention to response time and some of

them even used artificial intelligence in determining dynamic time quantum or priority. In general, measurement are not far from

outliers. So giving the optimum results cannot be obvious for the set of processes having CPU burst time. The presence of

outliers in the list is obvious especially when the CPU always tries to keep a mix of CPU bound and I/O bound processes.

Decreasing the outlier makes the data more exact when finding mean or median value for determining time quantum.

VIII. Proposed Algorithm

This approach of Round Robin Scheduling Algorithm emphasizes on simple Round Robin Algorithm drawbacks. This kind of

scheduling gives the same amount of time to all processes. Processes are executed in first come first served way. Round Robin is

not efficient with processes with small execution time. Therefore, as a result, the waiting time and response time of processes

increase and consequently the system throughput decreases. In this proposed algorithm, we have implemented RR algorithm

while taking into account priority based for tasks management. In fact, a priority index is assigned to each Process. Processes in

ready queue are sorted according to their priorities. Process with small priority index are placed in the head of the ready queue

and so on. The proposed algorithm solves the problem of higher average waiting time, turnaround time, response time and more

context switches and thereby improves the system performance. The proposed algorithm is described in the following flowchart

(figure 4):

8

Figure 4. PBRR flowchart

1. PBRR illustration by Taking Example

We have three processes P0, P1and P2 in ready queue arriving at time 0 with burst time 10, 3 and 2 respectively. Each process

has its own priority index 2,1 and 3respectively (the lowest index is associated to the highest priority).We consider Time

quantum (TQ) is assumed4 milliseconds (ms).

In step1, the scheduler select the process, which has the highest priority and put it in head of the ready queue and so on. In the

end, the ready queue is sorted according to priority index of each process.

The process P1 has the highest priority, so the scheduler assigns P1 to CPU. After execution of allocated process for time

interval of 3ms,P1 has finished execution, it will be removed from the ready queue.

No

time=time+rt[i], rt[i]=0 & flag=1

Yes

X

Re-Initialize timer_counter, Reload timer_value, Save
CPU registers (W, BSR, STATUS), Save return address
of current task(TOSL, TOSH, TOSU)

timer_counter≥ time_quantum

Increment task_counter

No

Yes

No
Interrupt flag=1

Processes are sorted according to their priorities

Call processes (Task0, Task1, Task2)

Start the selected task in the ready queue

Processes entered ready queue

Initializing Processes (process counter, Priority)

Create Processes (Task0, Task1, Task2)& parameters initialization

(time_quantum, task_counter, timer_value, execution_time,

waiting _time, turnaround_time)

Begin

rt[i]=rt[i]- time_quantum
& time=time+time_quantum

Yes

remain= remain-1,
waiting_time[i]=waiting_time[i]-execution_time[i],
turnaround_time[i]=turnaround_time[i]+time, flag=0

Average_waiting_time= ∑
waiting_time[i]

nbre of tasksi

Average_turnaround_time= ∑
turnaround_time[i]

nbre of tasksi

End

rt[i]=0 , flag=1

Yes

rt[i]>0

rt[i]=execution_time[i]

rt[i]≤ time_quantum,

 rt[i]>0

Yes

Select next task, Push its return address to TOSL, TOSH,

TOSU registers, Restore CPU registers W, BSR, STATUS

X

No

9

Next process in the sorted ready queue, which has the highest priority, is P0 with 10ms CPU burst time. CPU will be allocated to

P0 for a time interval of 4ms.P0 has a remaining CPU burst time to 6ms. It will be compared to time quantum so it is less than

the specified TQ value soP1is put at the tail of the ready queue to be allocated again to CPU for remaining time interval of 6ms.

Next process in the ready queue, which has highest priority is P2 with 2ms CPU burst time. The scheduler will allocate P2 to the

CPU for a time interval of 2ms. Since the CPU burst time of P2 is less than the TQ, P2 has finished execution, it will be removed

from the ready queue. Now, P0 is the only process that didn't finish its execution.

So P0 will be allocated to the CPU again for 4ms. P0 remaining burst time became 2ms. Since there are no other processes in

the ready queue, P0 is reallocated to the CPU for the remaining CPU burst time. P0 finish its executions and will be removed

from the ready queue.

When using PBRR scheduling algorithm, the waiting time is 5 ms for P0, 0ms for P1and 7 ms for P2, as result the average

waiting time is 4ms.

It should be noted that the average waiting time is 5.33 ms when using simple RR scheduling algorithm. This average waiting

time was significantly improved when using PBRR scheduling algorithm for the same set of processes and features.

2. Experimental Result

The environment in which the execution takes place is a single processor environment and all the processes are independent. All

the processes have the same arrival time. All the attributes like burst time, number of processes, priority and the time slice of all

the processes are known before submitting the processes to the processor. The time quantum is taken in milliseconds. For

experimental observation, it is considered that the arrival time of all processes is zero.

Case Studies:

Example 1:

Suppose RR time quantum =4, let’s consider Processes with Its Id, Burst Time and priority as mentioned in table 1:

Table 1. Processes with Its Id, Burst Time and priority

Process ID Burst Time (ms) Priority

P0 10 2

P1 3 1

P2 2 3

According to simple Round-Robin Algorithm, the Gant chart will be as mentioned in figure 5:

 P0 P1 P2 P0 P0

0 4 7 9 13 15

Figure5. Gantt chart for simple RR

Total average waiting time=5.33

Average turnaround time=10.33

According to simple PBRR Algorithm, the Gant chart will be as mentioned in figure 6:

 P1 P0 P2 P0 P0

0 3 7 9 13 15

Figure6. Gantt chart for PBRR algorithm

Total average waiting time=4

Average turnaround time=7.33

Table 2 resume a comparison between Simple RR and PBRR performances. It's clear that PBRR have lower average waiting

time, lower average turnaround time and higher throughput than a simple RR scheduling algorithm.

10

Table 2. Comparison of simple RR and PBRR

Algorithm

Average

waiting

time

Average

Turnaround

time

Throughput

Simple RR 5.33 10.33 Low

PBRR 4 7.33 High

Example 2:

Suppose RR time quantum =4ms let's consider Processes with Its Id, Burst Time and priority as mentioned in table 3.

 Table 3. Processes with Its Id, Burst Time and priority

Process ID Burst Time (ms) Priority

P0 12 2

P1 25 3

P2 7 1

According to simple Round-Robin Algorithm, the Gant chart will be as mentioned in figure 7:

 P0 P1 P2 P0 P1 P2 P0 P1 P1 P1 P1 P1

0 4 8 12 16 20 23 27 31 35 39 43 44

Figure7. Gantt chart for simple RR

Total average waiting time=16.66

Average turnaround time=31.33

According to simple PBRR Algorithm, the Gant chart will be as mentioned in figure 8:

 P2 P0 P1 P2 P0 P1 P0 P1 P1 P1 P1 P1

0 4 8 12 15 19 23 27 31 35 39 43 44

Figure8. Gantt chart for PBRR algorithm

Total average waiting time=14

Average turnaround time=29

Table 4. Processes with Its Id, Burst Time and priority

Algorithm

Average

waiting

time

Average

Turnaround

time

Throughput

Simple RR 16.66 31.33 Low

PBRR 14 29 High

Table 4 resume a comparison between Simple RR and PBRR performances. It's clear that PBRR have lower average waiting

time , lower average turnaround time and higher throughput than a simple RR scheduling algorithm.

IX. CONCLUSION

In this paper, we introduced a real time operating system and real time tasks. In addition, we present the scheduling objectives

and parameters that must be considered for comparing CPU scheduling algorithms performance. We emphasize on studying RR

drawbacks like high average turnaround, high context switching, high response time, high turnaround time and low throughput.

After analyzing RR performances and drawbacks, we proposed a new algorithm named Priority Based Round Robin (PBRR),

which deal with drawbacks of implementing a simple round robin algorithm. Priority index is assigned to each Process.

11

Processes in ready queue are sorted according to their priorities. This new approach is performing better than a simple RR in

terms of average waiting time, average turnaround time.

For future work, we look further ahead to use hardware architecture based on FPGA. The hardware accelerators will be used

during the tasks scheduling mainly in sorting processes in the ready queue. In fact, the use of a hybrid scheduler will improve

system latency and determinism.

X. References:

[1] William Stallings,“Operating Systems Internal and Design Principles”, 5thEdition, ISBN-10: 0-13-230998, 2006.

[2] Silberschatz, A., Peterson, J. L., and Galvin, B., “Operating System Concepts”, Addison Wesley, 7th Edition, ISBN-

10: 0471694665, 2006.

[3] E.O. Oyetunji, A. E. Oluleye,” Performance Assessment of Some CPU Scheduling Algorithms”, Research Journal of

Information Technology, 1(1): pp 22-26, 2009.

[4] John Wiley, “The Architecture of Computer Hardware and Systems Software: An Information Technology Approach”,

Fourth Edition, ISBN: 978-0471-71542-9, 2009.

[5] Yavatkar, R. and K .Lakshman, “A CPU Scheduling Algorithm for Continuous Media Applications”, In Proceedings of the

5th International Workshop on Network and Operating System Support for Digital Audio and Video, pp: 210-213, 1995.

[6] Al-Husainy, M.A.F.,”Best-job-first CPU scheduling algorithm”, Inform. Technol. J., Volume 6: Number 2, pp: 288-293,

2007.

[7] C. Yaashuwanth and R. Ramesh, “A New Scheduling Algorithm for Real Time System”, International Journal of Computer

and Electrical Engineering (IJCEE), Vol. 2, No. 6,pp 1104-1106, December 2010.

[8] RakeshMohanty, H. S. Behera, KhusbuPatwari, Monisha Dash, M. Lakshmi Prasanna, “Priority Based Dynamic Round

Robin (PBDRR) Algorithm with Intelligent Time Slice for Soft Real Time Systems”, (IJACSA)International Journal of

Advanced Computer Science and Applications, Vol. 2, No.2, February 2011.

[9] HimanshiSaxena, Prashant Agarwal, “Design and Performance Evaluation of Precedence Scheduling Algorithm with

Intelligent Service Time (PSIST)”, ICCMS, 2012.

[10] P.SurendraVarma, “Design and Performance Evaluation of Precedence Scheduling algorithm with Mean Average as Time

Quantum(PSMTQ)”, International Journal of Advanced Research in Computer Science and Electronics Engineering,

Volume 1, N°7, 2012.

[11] H. S. BeheraBrajendra Kumar Swain, “A New Proposed Precedence based Round Robin with Dynamic Time Quantum

(PRRDTQ) Scheduling Algorithm For Soft Real Time Systems”, International Journal of Advanced Research in Computer

Science and Software Engineering, Volume 2, Issue 6,2012.

[12] ZenaHussain Khalil, Ameer BasimAbdulameerAlaasam, “Priority Based Dynamic Round Robin with Intelligent Time Slice

and Highest Response Ratio Next Algorithm for Soft Real Time System”, Global Journal of Advanced Engineering

Technologies, Volume 2, Issue3, 2013.

[13] H.S.Behera, ReenaKumariNaik, SuchilagnaParida, “A new hybridized multilevel feedback queue scheduling using

dynamic time quantum”, International Journal of Engineering Research & Technology, Vol.1, Issue 3, May- 2012.

[14] Alain DORSEUIL et Pascal PILLOT, “Le Temps Réel En Milieu Industriel”,ISBN-10 : 204019875X,DUNOD 1991.

[15] F.Ndoye, “Ordonnancement temps réel préemptif multiprocesseur avec prise en compte du coût du système

d’exploitation”, ÉCOLE DOCTORALE Sciences et Technologie de l’Information, des Télécommunications et des

Systèmes INRIA Paris-Rocquencourt, April 2014.

[16]C. L. Liu and J W. Layland, “Scheduling algorithms for multiprogramming in a hardrealtimeenvironment”, ACM 20,

volume 20, pp. 46-61, 1973.

[17] L. Cucu, “Ordonnancement non préemptif et condition d’ordonnançabilité pour systèmes embarqués à contraintes temps

réel”, PhDThesis, Université Paris Sud, 2004.

[18] J-J. Hwang, Y-C. Chow, F. D. Anger, and C-Y. Lee, “Scheduling precedence graphs in systems with interprocessor

communication times”, SIAM Journal on Computing, Volume 18, 244–257, April 1989.

[19] W. W. Chu and L. M-T. Lan, “Task allocation and precedence relation for distributed real-time systems”, IEEE

Transactions on Computers, vol.C-36(18), June 1987.

[20] J. Xu, “Multiprocessor scheduling of processes with release times, deadlines, precedence, and exclusion relations”, IEEE

Trans. Softw. Eng., 19:139–154, February 1993.

[21] Arpaci-Dusseau, Remzi H.; Arpaci-Dusseau, Andrea C., “Operating Systems: Three Easy Pieces”, Chapter Scheduling

Introduction, Arpaci-DusseauBooks,ISBN, 1105979121, 2014.

https://www.abebooks.fr/products/isbn/9782040198756/2800101016
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched.pdf

12

[22] A. Noon, A. Kalakechdan S. Kadry, “A New Round Robin Based Scheduling Algorithm for Operating Systems: Dynamic

Quantum Using the Mean Average,” IJCSI International Journal of Computer Science Issues, vol. 8, no. 3, pp. 224-229,

2011.

[23] I. S. Rajput,Dan D. Gupta, “A Priority based Round Robin CPU Scheduling Algorithm for Real Time Systems,”

International Journal of Innovations in Engineering and Technology, vol. 1, no. 3, pp. 1-11, 2012.

[25] J. Y-T. Leung and J. Whitehead, “On the complexity of fixed-priority scheduling of periodic real-time tasks”, Performance

Evaluation Journal, Volume 2, Issue 4, pp. 237-250, 1982.

[26] P. Singh, V. Singh dan A. Pandey, “Analysis and Comparison of CPU Scheduling Algorithms”,International Journal of

Emerging Technology and Advanced Engineering, vol. 4, no. 1, pp. 91-95, 2014.

